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Why the rigorous approach?

● Traditional approach to GW science is hard
● Forward problem: Parameters ↦ expected data

○ Template models: Time/frequency detector response
○ Noise models: PSD, transients

● Inverse problem: Data ↦ inferred parameters
○ Point estimates: MLE (overlap maximization)
○ Credible regions: Bayesian posteriors
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● Two motivating reasons for integration
○ We want to complement & improve traditional approach, not replace it
○ We want to streamline forward/inverse solutions & their interface



Deep learning, demystified (only for this talk)

● Highly recursive nonlinear regression
○ Input X ⟶ neural network N(X,P) ⟶ output Y

● Training: Optimize N over parameters P
● Supervised vs unsupervised

○ Training set is {(X,Y)} vs training set is {X}

● Classification vs regression
○ Y is discrete vs Y is continuous
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● Training: Optimize N over parameters P
● Supervised vs unsupervised

○ Training set is {(X,Y)} vs training set is {X}

● Classification vs regression
○ Y is discrete vs Y is continuous

● Statistical model for interpolation/fitting
○ Scales well with dimensionality of X & Y
○ Y is fully analytic & fast to compute
○ dY/dX, etc. are also analytic & obtained for free



Deep learning in GW astronomy*

● Various LIGO-type applications
○ Glitch classification (Zevin et al.; Razzano & Cuoco; George et al.)
○ Denoising (Shen et al.; Wei & Huerta; Kulkarni & Cavaglia**)
○ Detector control systems (Vajente et al.**)

● LIGO-type signal classification & regression
○ Convolutional neural networks (George & Huerta; Gebhard et al.; Gabbard et al.)
○ Follow-on analyses (Fan et al.; Rebei et al.; Nakano et al.; Field et al.**)

*Apologies if there any omissions
**No manuscript yet (I think)
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○ Convolutional neural networks (George & Huerta; Gebhard et al.; Gabbard et al.)
○ Follow-on analyses (Fan et al.; Rebei et al.; Nakano et al.; Field et al.**)

● Current classification work ≠ statistical signal detection
○ Test set prevalence & FPR are not representative (but see Gebhard et al. 2019)

● Current regression work ≠ Bayesian parameter estimation
○ Estimates/errors are statements about data sets, network architecture, training process
○ Have not been mapped to statements about signal model, noise model, astrophysical prior

*Apologies if there any omissions
**No manuscript yet (I think)



● ROMAN (Chua, Galley & Vallisneri)
○ Reduced-order modeling with artificial neurons
○ Near-lossless compression of model with ROM
○ Source parameters ↦ ROM coefficients
○ Shown on 4-parameter binary inspiral model
○ Speed/accuracy comparable to surrogates

Neural networks in forward models

Chua, Galley & Vallisneri (2019)
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○ Near-lossless compression of model with ROM
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● Inference can be done in ROM domain
○ Faster likelihood evaluations like ROQ

● Fast & accurate template derivatives
○ Fisher matrix estimates become trivial
○ Derivative-based sampling (MALA, HMC, etc.)
○ Derivative-based upsampling (Chua)

Neural networks in forward models

Chua (2019)



● Inverse problem without forward models
○ Difficult: Essentially parametrized by noise
○ Unlikely to remove the need for posterior sampling
○ But solvable in principle with perfect training
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● PERCIVAL (Chua & Vallisneri)
○ Input: Detector data (in some representation)
○ Output: 1- or 2-parameter marginalized posteriors
○ No sampling performed during runtime
○ No posteriors computed during training

● Several potential applications
○ Fast sky localization
○ MCMC proposal kernels
○ Scoping out parameter estimation for LISA
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● Deep learning is rapidly drawing interest in GW astronomy
● It is not a (completely) black box, and its limitations can be understood 
● It can bring computational benefits when integrated with traditional methods


